
Pulse Secure Virtual Traffic Manager: Java
Development Guide

Copyright Notice

This document is provided strictly as a guide. No guarantees can be provided or expected. This
document contains the confidential information and/or proprietary property of Ivanti, Inc. and its
affiliates (referred to collectively as “Ivanti”) and may not be disclosed or copied without prior written
consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and
descriptions, at any time, without notice. Ivanti makes no warranty for the use of this document and
assumes no responsibility for any errors that can appear in the document nor does it make a
commitment to update the information contained herein. For the most current product information,
please visit www.Ivanti.com.

Copyright © 2024 Ivanti, Inc. All rights reserved.

Protected by patents, see https://www.ivanti.com/patents.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 2 of 30

http://www.ivanti.com/
https://www.ivanti.com/patents
http://www.ivanti.com/company/legal

Contents

Preface 4
Document conventions 4
Requesting Technical Support 5

Java Development 7
Introduction 7
Available Features 7
Java API Documentation 8
Java Technical References 8

Configuring Java 10
Java Requirements 10
How Java Extensions Work 10

Writing a Java Extension 12
Java Classes and Servlet APIs 12
Traffic Manager Extensions to the Servlet API 13
Creating TrafficScript Functions Using Java Extensions 15
Compiling a Java Extension 17
Debugging Extensions 20

TrafficScript Functions in the Java Extension API 23
Equivalent TrafficScript Functions in the Java Extension API 23
Attributes List 29

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 3 of 30

http://www.ivanti.com/company/legal

Preface

Document conventions
The document conventions describe text formatting conventions, command syntax conventions, and
important notice formats used in Ivanti technical documentation.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text
to highlight specific words or phrases.

Format Description

bold text Identifies command names

Identifies keywords and operands

Identifies the names of user-manipulated GUI elements

Identifies text to enter at the GUI

italic text Identifies emphasis

Identifies variables

Identifies document titles

Courier Font Identifies command output

Identifies command syntax examples

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of
parameters and their logical relationships.

Convention Description

bold text Identifies command names, keywords, and command options.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 4 of 30

Preface

http://www.ivanti.com/company/legal

Convention Description

italic text Identifies a variable.

[] Syntax components displayed within square brackets are optional.
Default responses to system prompts are enclosed in square brackets.

{ x | y | z } A choice of required parameters is enclosed in curly brackets
separated by vertical bars. You must select one of the options.

x | y A vertical bar separates mutually exclusive elements.

< > Non-printing characters, for example, passwords, are enclosed in angle
brackets.

... Repeat the previous element, for example, member[member...].

\ Indicates a “soft” line break in command examples. If a backslash
separates two lines of a command input, enter the entire command at
the prompt without the backslash.

Notes and Warnings

Note, Attention, and Caution statements might be used in this document.

A Note provides a tip, guidance, or advice, emphasizes important information, or provides a
reference to related information.

Attention

An Attention statement indicates a stronger note, for example, to alert you when traffic might be
interrupted or the device might reboot.

Caution

A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage
to hardware, firmware, software, or data.

Requesting Technical Support
Technical product support is available through the Ivanti Support Cente. If you have a support contract,
file a ticket with support.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 5 of 30

Preface

http://www.ivanti.com/company/legal

• Product warranties—For product warranty information, visit
https://support.pulsesecure.net/product-service-policies/

Self-Help Online Tools and Resources

For quick and easy problem resolution, Ivanti provides an online self-service portal called the Support
Center that provides you with the following features:

• Find CSC offerings: https://support.pulsesecure.net

• Search for known bugs: https://support.pulsesecure.net

• Find product documentation: https://www.ivanti.com/support/product-documentation

• Download the latest versions of software and review release notes:
https://support.pulsesecure.net

• Open a case online in the support Case Management tool: https://support.pulsesecure.net

• To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE)
Tool: https://support.pulsesecure.net

For important product notices, technical articles, and to ask advice:

• Search the Pulse Secure Knowledge Center for technical bulletins and security advisories:
https://kb.pulsesecure.net

• Ask questions and find solutions at the Pulse Community online forum:
https://community.pulsesecure.net

Opening a Case with Support

You can open a case with support on the Web or by telephone.

• Use the Case Management tool in the support at https://support.pulsesecure.net.

For international or direct-dial options in countries without toll-free numbers, see
https://support.pulsesecure.net/support/support-contacts/

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 6 of 30

Preface

https://support.pulsesecure.net/product-service-policies/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://www.pulsesecure.net/techpubs
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/
https://kb.pulsesecure.net/
https://community.pulsesecure.net/
https://support.pulsesecure.net/
https://support.pulsesecure.net/support/support-contacts/
http://www.ivanti.com/company/legal

Java Development
This chapter provides overview information about Java development.

Introduction
Java is a platform-independent, object-oriented programming language that has a large community of
developers, libraries, and applications. The Traffic Manager supports the use of Java Extensions in
TrafficScript, offering greater flexibility in traffic manipulation.

Extensions are modules that expand the functionality of virtual servers, working in a similar way to
TrafficScript rules. Java Extensions are based on the Java Servlet API, which is a widely used API that can
generate server responses.

For more information about Java Servlet technology, see
http://www.oracle.com/technetwork/java/javaee/servlet/index.html.

Using Java Extensions in TrafficScript makes it easy to offer functions like the following:

• Content processing: Improved XML/HTML processing using specialized Java libraries.

• Access to additional libraries: ISV libraries supplied as value-add solution.

• Authentication: Achieved by using protocols such as RADIUS, TACACS, or LDAP.

Available Features
The following standard features can be easily added using Java Extensions:

• Light Weight Directory Access Protocol support: LDAP is an Internet protocol that provides
access to the information on a server, usually to look up personal contact information and
additional data such as encryption certificates, pointers to printers, etc.

• Active Directory support: Active Directory support provides authentication, authorization, and
allows Administrators to apply policies to networks.

• RADIUS support: RADIUS (Remote Authentication Dial in User Service) is a specialized Internet
protocol used to control access to the network. It provides easy authentication, authorization,
and accounting.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 7 of 30

Java Development

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.ivanti.com/company/legal

• SQL Database interface support: SQL is the standard programming language for querying
and managing databases. It is supported by a number of software companies including Oracle
and Microsoft.

• SOAP support: SOAP is a protocol for exchanging XML-based messages over computer
networks, normally using HTTP or HTTPS. SOAP forms the foundation layer of the Web services
protocol stack, providing a basic messaging framework upon which abstract layers can be built.

• TACACS support: Terminal Access Controller Access-Control System is an authentication
protocol, mostly used in UNIX-like systems, that allows encrypted communication with a
remote server.

• Threading: Java code that can run in the background, not just as a request-response code.

• UDP communication: User Datagram Protocol (UDP) is an Internet protocol that allows
programs located on networked computers to communicate with other computers. UDP
generates messages that are sometimes referred to as datagrams.

• Advanced XML and HTML processing: XML provides the gateway for advanced formatting
and data-exchanging between different types of devices.

• Persistence of resources between requests: Resource persistence is linked with session
persistence and is offered as a standard feature. See the Pulse Secure Virtual Traffic Manager:
User’s Guide for more information about maintaining persistence between requests.

• Sessions using cookies: Cookies are an easy way to identify the user, provide customization,
and allow for session persistence, when needed.

Java API Documentation
Ivanti provides Javadoc-style documentation for the Traffic Manager's extensions to the Servlet API. To
view this documentation, see the Catalogs > Java page of the Admin UI. From the Java page, click the
Java API Documentation link.

Java Technical References
For technical information about Java and the extensions technology, see the links listed below.

• Java Servlet documentation:
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

• Extensions tutorials and essentials: http://www.servlets.com

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 8 of 30

Java Development

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.servlets.com/
http://www.ivanti.com/company/legal

• Eclipse software site: http://www.eclipse.org/downloads/

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 9 of 30

Java Development

http://www.eclipse.org/downloads/
http://www.ivanti.com/company/legal

Configuring Java
This chapter contains information about configuring Java.

Java Requirements

To use Java Extensions, you must install the Java run-time environment (JRE) version 6 (also
known as 1.6) or later on the server hosting the Traffic Manager software. Traffic Manager
appliance variants come with Java preinstalled.

To download the latest version of the Java Runtime Environment, see http://www.java.com/getjava/.

The Traffic Manager is available in a variety of software and appliance configurations. Java support
might not be available on all product variants - contact your support provider for details.

How Java Extensions Work
To use a Java Extension, it must be initiated from a TrafficScript rule using the java.run() function. The
java.run() function initiates a process called the Java Extension Runner. The Java Extension Runner
maintains instances of all the Extensions uploaded in memory, and passes that information from
TrafficScript to the instances when the java.run() function is initiated.

Setting Up the Traffic Manager

To use Java code in TrafficScript, first configure how Java operates. Click System > Global Settings >
Java Extension Runner to set up Java support in the Traffic Manager.

To use Java extensions on the Traffic Manager, first enable Java support by setting java!enabled to
“Yes”. Java support is disabled by default in newly-configured Traffic Manager instances.

To specify a Java runtime executable file, set the java!command field to the name of the executable file
(and the path if it is not on the systems default search path), along with any command line options that
Java should use. By default, the java!command is set to java -server.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 10 of 30

Configuring Java

http://www.java.com/getjava/
http://www.ivanti.com/company/legal

Under Global Settings, you will find these Java-related fields:

• java!lib (optional): This setting identifies the system location where the third-party Java jar files
are located, such as /usr/share/java.

All Java classes in this folder will be searched when the Java Extension runner starts, and
whenever this setting is modified.

• java!classpath (optional): This setting can be used to specify a list of jar files that should be
searched when the Java Extension runner starts.

This setting can be used to identify individual jar files that are not located in java!lib.

To check the setup, click Diagnose, and verify that the Java Extensions section does not report any
errors. If error free, the Java Extensions are now ready for use.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 11 of 30

Configuring Java

http://www.ivanti.com/company/legal

Writing a Java Extension
This chapter describes the function of Java classes and Servlet APIs, describes how a Java Extension is
used with a Servlet API, how to create TrafficScript functions using Java Extensions, and how to write
(compile) and debug Java Extensions.

Java Classes and Servlet APIs
Java Extensions generate server responses, modify requests to backend servers, or alter responses from
other servers.

To use the Servlet API, you must create a Java class that extends either the GenericServlet or one of its
subclasses, such as the HttpServlet class.

Here’s an example of a simple HTTP Servlet:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res

)

throws ServletException, IOException

{

res.setContentType("text/plain");

PrintWriter out = res.getWriter();

out.println("Hello World!");

}

}

This is a standard Servlet that prints the phrase “Hello World!” whenever the Servlet is used.

The method doGet() is overridden from HttpServlet and is used whenever an HTTP GET
request/response (depending if the Java Servlet is called in a TrafficScript response/request rule) is
received. An identical function called doPost does the same for HTTP POST messages.

By default, the doGet/doPost methods display the error message “HTTP method POST/GET is
not supported by this URL”. To avoid this error, override the doGet/doPost methods.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 12 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

Traffic Manager Extensions to the Servlet API
The HTTP Servlet specification states that the doGet() and doPost() methods are passed in two
arguments, an HttpServletRequest object (commonly named req) and an HttpServletResponse object
(commonly named res).

The Traffic Manager’s implementation passes in two subclassed objects of type
ZXTMHttpServletRequest and ZXTMHttpServletResponse.

These implementations have several additional fields and methods used to access the additional
capabilities in the Java Extensions API. To use these fields and methods, cast the req and res objects to
the Traffic Manager subtype, as shown below:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import com.zeus.ZXTMServlet.*;

public class MyServlet extends HttpServlet

{

public void doGet(HttpServletRequest req, HttpServletResponse res

)

throws ServletException, IOException

{

ZXTMHttpServletRequest zreq = (ZXTMHttpServletRequest) req;

ZXTMHttpServletResponse zres = (ZXTMHttpServletResponse) res;

// Base Servlet API does not need to provide the ability to

// query the content type of a response

if(zres.getContentType() == null ||

!zres.getContentType().equalsIgnoreCase("text/html"))

{

return; // We’re not interested in non-html data

}

// Count how many times a html page has been sent

// with SNMP counter 1

zreq.incrementCounter(1);

BufferedReader in = zres.getReader();

PrintWriter out = zres.getWriter();

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 13 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

String current = null;

while((current = in.readLine()) != null) {

if(current.indexOf("<title>") != -1) {

current = "<title>My New Title</title>";

}

out.println(current);

}

}

}

Note the following points about this example:

• This example increments a counter every time a request for an HTML page is made.

The counter value can be viewed through the Traffic Manager’s SNMP interface. The Servlet
also alters the content of the HTML page, changing its title to “My New Title”.

• The example highlights one of the main differences between standard Servlets and Java
Extensions. Specifically, Java Extensions have the ability to manipulate data received from other
sources (in this case a Web server); whereas a normal Servlet is designed to only produce data.

Since the Java Extension alters data in a response, run the Java Extension from a TrafficScript
response.

The online help contains Javadoc-style documentation for the Traffic Manager’s extensions to the
Servlet API. To access online help, use one of the following methods:

• Access the Traffic Manager Admin UI, and press the Help button.

• Click the Manuals button on the on the Tool bar.

• Select the Java API Documentation link.

Modifying Responses and Writing Data From a Java Extension

It is possible to run several Java Extensions or TrafficScript rules to process a response before the
response is written back to the client.

However, once a Java Extension begins modifying the response data (for example, using the
PrintWriter.println() function), data is streamed back to the client. At this point, the HTTP headers are
flushed to the client and you cannot make any more modifications to the HTTP headers.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 14 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

Only one Java Extension may modify a response. You cannot modify response data using several Java
Extensions in succession. Do not run any Java Extensions once the response data is written to the client.

Creating TrafficScript Functions Using Java Extensions
Java Extensions can be used to do more than just process traffic. You can use Java Extensions to
implement new functions in TrafficScript, thus extending the TrafficScript language.

The following Java Extension implements the Soundex algorithm, which converts a name or other string
into a phonetic representation.

For more information about Soundex, see http://en.wikipedia.org/wiki/Soundex.

You can use the algorithm to test if two words sound the same, as shown in the following example:

import java.io.IOException;

import javax.servlet.*;

import com.zeus.ZXTMServlet.ZXTMServletRequest;

public class Soundex extends GenericServlet {

private static final long serialVersionUID = 1L;

public void service(ServletRequest req, ServletResponse res)

throws IOException

{

String[] args = (String[])req.getAttribute("args");

String result = doSoundex(args[0]);

((ZXTMServletRequest)req).setConnectionData("soundex", result

);

}

static String soundex = "01230120022455012623010202";

String doSoundex(String s) {

s = s.toUpperCase();

StringBuilder r = new StringBuilder();

char last = '0';

if(s.length() > 0) last = s.charAt(0);

r.append(last);

for(int i = 1; i < s.length(); i++) {

int j = s.charAt(i)-'A';

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 15 of 30

Writing a Java Extension

http://en.wikipedia.org/wiki/Soundex
http://www.ivanti.com/company/legal

char next = (j >= 0 && j < soundex.length()) ?

soundex.charAt(j) : '0';

if(next != last && next != '0') {

r.append(next); last = next;

}

if(r.length() >= 4) break;

}

while(r.length() < 4) r.append('0');

return r.toString();

}

}

This Java Extension is based on the simple GenericServlet API. The Java Extension should be called
(initiated) from TrafficScript, as shown below:

java.run("Soundex", $word);

Java Extensions cannot return values in the traditional sense.

The Java Extension inspects the first argument and then applies the Soundex algorithm.

The Servlet API does not provide a way for a servlet to return a value to its caller; you need to use the
ZXTMServletRequest.setConnectionData() method to set a local connection variable that the
TrafficScript rule can then use.

The following TrafficScript request rule, assigned to run every time on a simple client-first virtual server,
illustrates the use of this Java Extension:

sub soundex($word) {

java.run("Soundex", $word);

return connection.data.get("soundex");

}

$word = string.trim(request.getLine());

request.sendResponse("That sounds like " . soundex($word) . "\n"

);

The following illustrates the rule in use:

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 16 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

Compiling a Java Extension
To compile Java Extensions for use with the Traffic Manager, you need the following items:

• Java Development Kit (JDK), which contains the Java compiler. This can be downloaded from
http://www.oracle.com/technetwork/java/index.html.

• Java Servlet API, which can be found in the user interface by going to Catalogs > Java
Extensions Catalog and clicking the Java Servlet API link.

• Java Extensions API, which can be found in the user interface under Catalogs > Java
Extensions Catalog and clicking the Traffic Manager Java Extensions API link.

To compile a Java Extension, complete the following steps:

1. Copy the servlet.jar and zxtm-servlet.jar files to the directory where you are compiling the Java
Extension.

2. Run the following command:

$ javac -cp servlet.jar:zxtm-servlet.jar MyServlet.java

This creates a class file called MyServlet.class.

You can bundle a Java Extension with any other needed classes in a single .jar file. The Traffic
Manager automatically searches .jar files for the Java Extensions to use.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 17 of 30

Writing a Java Extension

http://www.oracle.com/technetwork/java/index.html
http://www.ivanti.com/company/legal

Running a Java Extension

ATTENTION
To run a Java extension on the Traffic Manager, you must first enable Java support. For more
information, see Setting Up the Traffic Manager.

First, compile and upload the Java Extension to the Traffic Manager.

To upload the Java Extension, go to the Catalogs > Java Extensions Catalog page of the user
interface, and specify the class or .jar file in the Upload section.

Alternatively, you can copy the file(s) to the $ZEUSHOME/zxtm/conf/jars directory.

Whenever a Java Extension is uploaded, a new TrafficScript rule is created. The new TrafficScript rule
contains the code java.run (using the “extension class name” convention).

The Extension user interface page should then show your Java Extension in the Java Extensions Catalog
section, as shown below.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 18 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

Unrecognized Extensions

If an Extension is listed in the Java Libraries & Data Catalog section, it means that the Extension has not
been recognized. The Extension will be listed as invalid, along with an error message detailing why it
failed to load.

Ensure that the class extends the GenericServlet (or a subclass of GenericServlet, such as HttpServlet)
and that any JAR libraries required to run the Extension have been uploaded, or are present in the
java!lib directory specified on the Global Settings page.

Replacing Extensions

Extensions are cached in memory when they are being used. If you replace an Extension with an
updated version by copying the Extension directly into the Traffic Manager configuration instead of
using the management interface, you may need to tell the Traffic Manager to reload the new Extension.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 19 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

To do this, go to the Extension catalog, select your Extension, check confirm, and click Reload selected.

Reloading the Extension causes the Extension Runner to remove your Servlet from memory, so
any information the Servlet was storing will be lost.

Extensions are not applied directly to virtual servers; Extension must be called (initiated) from within
rules. You can create a default Rulebuilder rule when uploading the Extension, which allows you to use
the Extension in a virtual server.

Alternatively, you can run your Extension from TrafficScript using the function:

java.run("MyPackage.MyServlet");

Extension Parameters

You can pass parameters to an Extension by using the following command:

java.run("MyPackage.MyServlet", "Hey there!");

The Extension can access these parameters using the following code:

String[] args = (String[]) req.getAttribute("args");

You can also specify parameters through the Extensions catalog by using the Catalogs > Extensions
menu and selecting the Extension you want to edit. These parameters are set every time an Extension is
used, and, therefore, are useful for defining global settings. The parameters can also be accessed from
inside your Extension using the following command:

ServletConfig config=getServletConfig();

String param = config.getInitParameter("param_name");

Debugging Extensions

Printing Debug Information

A simple way to view information about a running Extension is to print statements detailing the
Extensions status.

To print debugging information, you can use the log function (a member function of GenericServlet) as
shown below:

log("Hello log!");

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 20 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

This will output the string "Hello log!" to the main event log, where it will appear as shown below:

INFO: MyPackage.MyServlet: Hello log!

Java Exception Stack Traces

Java exception stack traces are useful for identifying where your code is failing. The main doGet/doPost
functions can only “throw” (send) IOExceptions or ServletExceptions (and any type of
RuntimeException). Be sure to address code failures before proceeding. Print an error report that you
can use for debugging the code or print a stack trace to the event log.

This example shows how to “catch” an exception and write its stack to the event log:

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

{

try {

throw new IOException("Hello");

} catch(Exception e) {

res.sendError(500, e.toString());

// Save stack trace as a string and print to the log

StringWriter sw = new StringWriter();

e.printStackTrace(new PrintWriter(sw));

log(sw.toString());

}

}

Remote Debugging

Java has a remote debugging facility that allows you to use a Java debugger on an Extension running on
the Traffic Manager.

Setting up the Traffic Manager to Accept Debugging

In this section, Eclipse is used but any Java debugger that supports remote debugging can be
used.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 21 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

To set up the Traffic Manager to accept debugging connections, complete the following steps:

1. Go to the Catalogs > Java Extensions Catalog page of the user interface.

2. Add the following line to the end of java!command, setting the following content:

-Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

This code must be entered on a single line.

The address value sets the port on which the Java runner “listens” for debugging connections. You can
set this port to whatever port you choose.

After applying these settings, the Java Extension Runner restarts and prints the following line:

WARN: Java: Listening for transport dt_socket at address: 8000

This message shows that the Traffic Manager is now ready to receive debugging connections. Next,
“point” your Java debugger at the Traffic Manager server on the correct port. To do this using Eclipse,
complete the following steps:

1. Add your Extension code to a Java project and ensure that the project compiles correctly. (If
you are developing your Extension in Eclipse, you may have already completed this step.)

2. Go to the debugger and select Open Debug Dialog...

3. Right-click Remote Java Application and click New.

4. Under Connection Properties, enter the Traffic Manager’s hostname and the port you set as the
remote debugging port (for example, 8000).

5. Click Debug.

Eclipse connects to the Java Extension Runner process, and the debugger can now be used as if the
code was being used locally.

Remote debugging also has the ability to “hot swap” altered code into the running system. Therefore,
altering and saving code in Eclipse also updates the Java Extension in use.

However, this change only lasts until the debugging session ends. You have to upload the
changes manually if you want them to be permanent.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 22 of 30

Writing a Java Extension

http://www.ivanti.com/company/legal

TrafficScript Functions in the Java
Extension API
This chapter details how to use the TrafficScript functionality in a Java Extension.

To find more information about Java, see Java API Documentation.

Equivalent TrafficScript Functions in the Java Extension API
This table lists TrafficScipt functions and the equivalent Java Extension API.

TrafficScript Function Java Extension API

connection.close()/discard() ZXTMServletResponse.dropConnection()

connection.getMemoryUsage() No equivalent.

connection.getNode() ServletRequest.getAttribute(“node”)

connection.get/setPersistence() ServletRequest.get/setAttribute(“persistence”)

connection.getPool() ServletRequest.getAttribute(“pool”)

connection.get/
setServiceLevelClass()

ServletRequest.get/setAttribute(“servicelevel”)

connection.getVirtualServer() ServletRequest.getAttribute(“virtualserver”)

connection.setPersistenceKey() ServletRequest.setAttribute(“persistencekey”)

connection.setPersistenceNode() ServletRequest.setAttribute(“persistencenode”)

connection.sleep() Thread.sleep()

connection.data.get/set() ZXTMServletRequest.get/setConnectionData()

counter.increment() ZXTMServletRequest.incrementCounter()

data.get/set() ZXTMServletRequest.get/setData()

data.getMemoryUsage() No equivalent.

data.reset() No equivalent.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 23 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

TrafficScript Function Java Extension API

event.emit(event, message) ZXTMServletRequest.emitEvent(event, message)

http.add/remove/setHeader() ZXTMHttpServletRequest.add/remove/setHeader()

http.addResponseHeader() HttpServletResponse.addHeader()

http.changeSite() HttpServletResponse.sendRedirect()

http.doesFormParamExist()/
getFormParam()/
getQueryString()

HttpServletRequest.getQueryString()

http.getBody() ServletRequest.getInputStream()/getReader()

http.getCookie() HttpServletRequest.getCookies()

http.getHeader()/headerExists() HttpServletRequest.getHeader()

http.getHeaderNames() HttpServletRequest.getHeaderNames()

http.getHostHeader() HttpServletRequest.getHeader()

http.getMethod() HttpServletRequest.getMethod()

http.getMultipartAttachment() Servlet can read the body data itself

http.getPath() HttpServletRequest.getRequestURL()

http.getRawURL() No equivalent.

http.getResponseBody() ZXTMHttpServletResponse.getInputStream()/
getReader()

http.getResponseCode() ZXTMHttpServletResponse.getStatus()

http.setResponseCode() HttpServletResponse.setStatus()

http.getResponseCookie() ZXTMHttpServletResponse.getCookies()

http.getResponseHeader()/
responseHeaderExists()

ZXTMHttpServletResponse.getHeader()

http.getResponseHeaderNames() ZXTMHttpServletResponse.getHeaderNames()

http.getVersion() ServletRequest.getProtocol()

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 24 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

TrafficScript Function Java Extension API

http.normalisePath() No equivalent.

http.redirect() HttpServlet.sendRedirect()

http.removeCookie()/
setCookie()

ZXTMHttpServletRequest.removeCookie()

http.removeResponseCookie() ZXTMHttpServletResponse.removeCookie()

http.removeResponseHeader() ZXTMHttpServletResponse.removeHeader()

http.scrubRequest/
ResponseHeaders()

No equivalent.

http.sendResponse() HttpServletResponse.sendError()

http.setBody() ZXTMHttpServletResponse.getWriter().print()

http.setCookie() HttpServletResponse.addCookie()

http.setIdempotent() ServletRequest.setAttribute(“idempotent”)

http.setMethod() ZXTMHttpServletRequest.setMethod()

http.setPath() ZXTMHttpServletRequest.setRequestURI()

http.set/setRawQueryString() ZXTMHttpServletRequest.setQueryString()

http.setResponseBody() ServletResponse.getOutputStream()/getWriter()

http.setResponseCode() HttpServletResponse.setStatus()

http.setResponseCookie() HttpServletResponse.addCookie()

http.stream.startResponse() HttpServletResponse.addHeader(), followed by
HttpServletResponse.setStatus()

http.stream.readResponse()/
readBulkResponse()

ZXTMHttpServletResponse.getInputStream()/
getReader()

http.stream.writeResponse() ServletResponse.getOutputStream().write()/
ServletResponse.getWriter().print()

http.stream.finishResponse() Servlet completes

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 25 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

TrafficScript Function Java Extension API

http.stream.continueFromBackend No equivalent

http.cache.disable()/enable() ServletRequest.getAttribute(“cache”)

http.cache.setKey() ServletRequest.getAttribute(“cachekey”)

http.compress.disable()/enable() ServletRequest.getAttribute(“compress”)

http.request.get()/head()/post() Use built in Java functions.

geo.getCity() ZXTMServletRequest.geoGetCity()

geo.getCountry() ZXTMServletRequest.geoGetCountry()

geo.getCountryCode() ZXTMServletRequest.geoGetCountryCode()

geo.getDistanceKM() ZXTMServletRequest.geoGetDistanceKM()

geo.getDistanceMiles() ZXTMServletRequest.geoGetDistanceMiles()

geo.getIPDistanceKM() ZXTMServletRequest.geoGetIPDistanceKM()

geo.getIPDistanceMiles() ZXTMServletRequest.geoGetIPDistanceMiles()

geo.getLatitude()/getLongitude() ZXTMServletRequest.geoGetLatLon()

geo.getRegion() ZXTMServletRequest.geoGetRegion()

geo.getRegionCode() ZXTMServletRequest.geoGetRegionCode()

lang.* Use built in Java functions.

math.* Use built in Java functions.

net.dns.resolveHost()/IP() java.net.InetAddress.getByName()/
getHostName()

pool.activeNodes() ZXTMServletRequest.getActiveNodes()

pool.select()/use() ServletRequest.setAttribute(“pool”) and
ServletRequest.setAttribute(“proxy”)

rate.getBacklog() ZXTMServletRequest.getRateBacklog()

rate.use() No equivalent.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 26 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

TrafficScript Function Java Extension API

request.avoidNode() ServletRequest.setAttribute(“avoidnodes”)

request.endsAt()/endsWith() No equivalent

request.get()/getLine() ZXTMServletRequest.getInputStream()/
getReader()

request.get/setBandwidthClass() ServletRequest.get/setAttribute(“bandwidth”)

request.getDestIP()/Port() No equivalent.

request.getLength() No equivalent.

request.getLocalIP()/Port() ServletRequest.getAttribute(“dstip”/”dstport”)

request.get/setRemoteIP()/Port() ServletRequest.get/setAttribute(“srcip”/”srcport”)

request.getRetries() ServletRequest.getAttribute(“retries”)

request.get/setToS() ServletRequest.get/setAttribute(“tos”)

request.getFD() No equivalent.

request.isResendable() ServletRequest.getAttribute(“resendable”)

request.retry() ZXTMServletRequest.retry()

request.sendResponse() ServletResponse.getOutputStream()/getWriter()

request.set() ZXTMServletRequest.getOutputStream()/
getWriter()

resource.exists()/get()/getMD5()/
getMTime()

Use Java built in functions.

response.append() Not provided, Extension can read/write its own
response

response.close() ZXTMServletResponse.dropConnection()

response.flush() ServletResponse.getOutputStream().flush()

response.get()/getLine() ZXTMServletResponse.getInputStream()/
getReader()

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 27 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

TrafficScript Function Java Extension API

response.get/setBandwidthClass() ServletRequest.get/
setAttribute(“serverbandwidth”)

response.getLength() No equivalent.

response.getLocalIP()/Port() ServletRequest.getAttribute(“serverdstip” /
”serverdstport”)

response.getRemoteIP()/Port() ServletRequest.getAttribute(“serversrcip” /
”serversrcport”)

response.get/setToS() ServletRequest.get/setAttribute(“servertos”)

response.getFD() No equivalent.

response.set() ServletResponse.getOutputStream()/getWriter()

rule.getName() ServletRequest.get/setAttribute(“rule”)

rule.getState() ZXTMServletResponse.isResponseRule() - 'true' if
this is in a response rule

slm.conforming() ZXTMServletRequest.getSLMConforming()

slm.isOK() ZXTMServletRequest.isSLMOK()

slm.threshold() ZXTMServletRequest.getSLMThreshold()

ssl.clientCert*() ServletRequest.getAttribute(
“javax.servlet.request.X509Certificate”)

ssl.clientCipher() ServletRequest.getAttribute(“javax.net.ssl.cipher_
suite”)

ssl.isSSL() ServletRequest.getAttribute(“SSL_PROTOCOL”) is
set.

ssl.sslSessionID() ServletRequest.getAttribute(“SSL_SESSIONID”)

string.* Use built in Java functions.

sys.* Use built in Java functions.

xml.* Use built in Java functions.

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 28 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

Attributes List
Attributes are parameters that can be used with the ServletRequest.get/setAttribute() methods to view
and alter the connection information.

Attribute Description

args Any arguments passed to the Servlet from TrafficScript

avoidnodes Space separated list of nodes to avoid with the load balancing

bandwidth Get/set the bandwidth class to use

cache Set to 0 for http.cache.disable(), 1 for http.cache.enable()

cachekey Set the cache key.

compress Set to 0 for http.compress.disable(), 1 for 'default' and 2 for
http.compress.enable() .

dstip Destination IP address (i.e. the address on the traffic manager).

dstport Destination port (i.e. the port on the traffic manager) .

idempotent Get/set whether this request is idempotent - 0/1 for no/yes

node Node used by this connection - readable by a response rule only.

persistence Get/set the persistence class to use .

persistencekey Set the persistence data to use for universal session persistence

persistencenode Set the node to persist on

pool Get/set the pool to use

proxy Set the machine to forward proxy on to. This should be set to IP:Port
(i.e. the servlet does any DNS lookup)

resendable Read-only: is the request is resendable to another node. Valid in
response rules only. Returns 0/1

retries Read the number of retries - request.getRetries()

rule The name of the TrafficScript rule that called this extension.

serverbandwidth Get/set the bandwidth class to use for server-side data

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 29 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

Attribute Description

serverdstip The IP address the server (node) sent to.

serverdstport The port the server (node) sent to.

serversrcip The IP address of the server (node).

serversrcport The server's (node's) source port.

servertos IP Type-Of-Service flag to use for the server connection - takes
same args as request.getToS()

servicelevel Get/set the SLM class to use

srcip Client's IP address

srcport Client's source port

tos IP Type-Of-Service flag to use for the client connection

virtualserver Read the virtual server name

Copyright © 2024 Ivanti, Inc. All Rights Reserved. Privacy and Legal.

Page 30 of 30

TrafficScript Functions in the Java Extension API

http://www.ivanti.com/company/legal

	Preface
	Document conventions
	Requesting Technical Support

	Java Development
	Introduction
	Available Features
	Java API Documentation
	Java Technical References

	Configuring Java
	Java Requirements
	How Java Extensions Work

	Writing a Java Extension
	Java Classes and Servlet APIs
	Traffic Manager Extensions to the Servlet API
	Creating TrafficScript Functions Using Java Extensions
	Compiling a Java Extension
	Debugging Extensions

	TrafficScript Functions in the Java Extension API
	Equivalent TrafficScript Functions in the Java Extension API
	Attributes List

